Towards Textbook Multigrid Efficiency for Fluid Flows: Stagnation

James L. Thomas
NASA Langley Research Center

Boris Diskin
National Institute of Aerospace

Ray E. Mineck
NASA Langley Research Center

March 31, 2003
Outline

• Motivation and objective

• Elements of Textbook Multigrid Efficiency (TME)

• Stagnation flow model problems

• Isolation and analysis of difficulties
 – Interior relaxation
 – Boundary closure/relaxation
 – Interactions

• Computational results

• Concluding remarks
Motivation

- Textbook Multigrid Efficiency (TME): Solutions attained in a few (< 10) minimal work units

 A minimal work unit is the operation count in one target-grid residual evaluation

- Motivation: Develop TME algorithms for time-dependent viscous flows applied to flow control applications
 - Builds upon earlier incompressible (Pressure-Poisson) formulations in generalized coordinates
 - Inviscid (Roberts, Sidilkover & Swanson, 1999)
 - Viscous (Swanson, 2001)
Current Objective

• Current Objective: Overcome difficulties encountered in applications associated with stagnation regions
 – Non-optimal asymptotic convergence rates
 – Poor coarse-grid corrections
 – Reduced efficiency for large domain sizes (coarse grids, high stretching)

• Convergence difficulties also experienced in stagnation for preconditioned compressible formulations (e.g., Turkel, Vatsa & Radespiel, 1996)
Viscous Flow Around a Parabola

Parabola Flow, Grid: 65 x 33

Log(||Res||_{2})

Parabola, Re_{R} = 312.5 (Re_{c} = 10^4), R = 0.03125

X/R

Y/R

Cycles
Incompressible Navier-Stokes (INS) equations

- Pressure-Poisson Formulation:

\[u \partial_x^u u + v \partial_y^u u - \nu \Delta^h u + \partial_x^c p = 0, \]
\[u \partial_x^u v + v \partial_y^u v - \nu \Delta^h v + \partial_y^c p = 0, \]
\[(\partial_x^c u)^2 + 2(\partial_y^c u)(\partial_x^c v) + (\partial_y^c v)^2 + \Delta^h p = 0. \]

- Efficient relaxation over a major part of the domain

\[L \delta q = -R^h(q^n) \quad \delta q = q^{n+1} - q^n \]

- Principal linearization \(L \) is upper triangular (decoupled relaxation)
Principal Linearization
(From the Standpoint of Relaxation)

- The principal linearization \mathbf{L} is derived from the full Newton linearization by removing subprincipal terms.

- **Scalar equation:** Retain terms that make major contributions to the residual.

- **Systems:** Retain terms that make major contributions to the determinant of the matrix operator.
Elements of TME : Principal Linearization

(Example - Nonlinear Convection Operator: \(u \partial_x^h u \))

Full Linearization: \([u \partial_x^h + \partial_x^h u] \delta u \)

High-Frequency Contribution (local mode analysis):

\[
\frac{1}{h} \left[u \partial_x^h + h \partial_x^h u \right] \delta u \\
O(u) \quad O(hu_x)
\]

Regular flow region (\(hu_x < u \)) : \(L = u \partial_x^h \)

Stagnation flow region (\(hu_x \approx u \)) : \(L = u \partial_x^h + (\partial_x^h u) \)
Principal Linearization

- Principal Linearization in the regular flow field:

\[L = \begin{bmatrix} Q^u & 0 & 0 \\ 0 & Q^u & 0 \\ 0 & 0 & \Delta^h \end{bmatrix} \]

\[Q^u = u \partial_x^u + v \partial_y^u - \nu \Delta^h \]

\[\det L = (Q^u)^2 \Delta^h \]

- Principal Linearization Near Stagnation (Full Linearization):

\[L = \begin{bmatrix} Q^u + (\partial_x^u u) & (\partial_y^u u) & \partial_x^c \\
(\partial_x^u v) & Q^u + (\partial_y^u v) & \partial_y^c \\
2(\partial_x^c u) \partial_x^c + 2(\partial_x^c v) \partial_y^c & 2(\partial_y^c u) \partial_x^c + 2(\partial_y^c v) \partial_y^c & \Delta^h \end{bmatrix} \]
Relaxation Strategy for Factorizable Scheme

- The efficiency goal is the “per relaxation” convergence rates associated with scalar factors in the regular flow field.

- Global: decoupled relaxation in the regular flow field.

- Local: coupled relaxation near boundaries/singularities
 - The local principal linearization is closer to a full linearization and generally not easily analyzed.
 - A different discretization might be used.

- General approach is to tailor local relaxation to local properties of the solution.
Relaxation Framework

- Linearized equations relaxed at each level

\[L\delta(q) = -R(q) - \frac{\partial R}{\partial q}\delta q \]

- Global Relaxation: alternating line-implicit
 - Pressure-equation Gauss-Seidel relaxation (velocity is fixed)
 - Relaxation (marching) of momentum equations

- Local Relaxation: equations are solved simultaneously
 - at 5 points near the body surface or outflow
 - at 3 points near the inflow boundary
Coupling of Global and Local Relaxation
(At a Boundary)
Stagnation Flow Model Problems
Inviscid Stagnation Flow: Boundary Conditions

• Differential Conditions I - primitive equation set:
 – Inflow: Given u, v
 – Outflow: Given p
 – Tangency: Zero normal velocity

• Differential Conditions II - Pressure-Poisson formulation:
 – Inflow: Continuity equation, $u_x + v_y = 0$
 – Continuity equation enforced only to within discretization error: $Q(u_x + v_y) = 0$

• Other necessary considerations
 – Numerical closure equations
 – Conservation law equations at tangency boundaries
An Example of the Difficulties Near Stagnation

Outflow Boundary Approaching Cylinder
Upper Triangular Solves + Boundary Solves

Shown above: Inflow @ R = 5 ; Outflow @ R = 1.05
An Example of the Difficulties Near Stagnation
Outflow Boundary Approaching Cylinder
Upper Triangular Solves + Boundary Solves

Outflow: (R=1.05)

Outflow: (R=1.50)
An Example of the Difficulties Near Stagnation

Inflow (R=5) / Outflow (R=1.05)
Upper Triangular Solve + Boundary Solves

Single Grid

2-Grid FAS (1,0) Multigrid
(avg. residual reduction = 0.2 per cycle)
Analysis of Relaxation: Plane Stagnation

Exact Solution: \(u = -x > 0, \ v = +y > 0, \ u_x = -1, \ v_y = +1 \)

- Examine behavior of upper triangular solve
 (L in regular flow + readily available terms)

\[
L = \begin{bmatrix}
Q^u + u_x & 0 & \partial_c^c \\
0 & Q^u + v_y & \partial_y^c \\
0 & 0 & \Delta^h
\end{bmatrix}
\]

- Analysis of iteration is a variable coefficient problem

\[
L \delta \epsilon = -\frac{\partial R}{\partial q}(\epsilon^n) \quad \delta \epsilon = \epsilon^{n+1} - \epsilon^n
\]

- Several constant coefficient approximations analyzed
Forms of Analysis: Plane Stagnation

- Full space (Fourier) analysis: prediction of possible worst amplifications at initial iterations

- Mode analysis with boundary conditions: prediction of asymptotic convergence rates and penetration distances for characteristic (velocity) direction
 - Differential equations only
 - Periodic in single direction

- Domain size L constrained for relevancy of constant coefficient approximation to variable coefficient problem

$$|u_xL| \leq u \quad |v_yL| \leq v$$
Results of Full Space Analysis

• Eigenvalues of error amplification matrix are \(f(N, v/u) \):

\[
\lambda = \frac{2}{\theta_x^2 + \theta_y^2} \left[\frac{v_y \theta_y^2}{Q + v_y} + \frac{u_x \theta_x^2}{Q + u_x} \right] \quad \theta_x, \theta_y \in [-\pi, \pi]
\]

• Uniformly good smoothing rates were found (maximum 1/10)

• In cross-characteristic direction (normal to velocity), the lowest frequency contribution becomes:

\[
\lim_{N \to \infty} \hat{Q} = 0 \quad \Rightarrow \quad \lambda = 2
\]
Results of Mode Analysis with Boundary Conditions

- Fast asymptotic error decay for \(v = 0 \)
- Initial error amplified for a few steps
- Analysis prompted assessment of diagonally dominant \(L \) for momentum equations
 - Along symmetry plane, \(|L| = |\frac{\partial R}{\partial q}| = (Q - u_x)\Delta \)
 - \((L)_{1,1} = Q + |u_x| \quad (L)_{2,2} = Q + |v_y| \)
 - Implementation was somewhat effective in eliminating instability of nonlinear problem (both plane and cylinder stagnation)
An Example of the Difficulties Near Stagnation
Outflow Boundary Approaching Cylinder
Upper Triangular Solves

Outflow: (R=1.025)

Pressure Equation Residual

Diagonally Dominant Form

Original Form

Iteration

Pressure Equation Residual

10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

0 2 4 6 8 10
Numerical Closure Equations : Outflow Boundary

(Pressure Specified at $x = \text{Constant}$)

- Original closure :
 - Upwind discretization of momentum equations
 \[Q^u u + \partial_x u p = 0 \quad Q^v v + \partial_y v p = 0 \]

- Revised closure :
 - Upwind discretization of v-momentum equation
 \[Q^u v + \partial_y v p = 0 \]
 - Compact discretization of continuity equation
 \[\partial_x u + \partial_y v = 0 \]

- Both conditions yield asymptotically accurate schemes but revised closure allows computation on much coarser grids
Effect of Discrete Boundary Closure

Revised Boundary Closure

Original Boundary Closure

Radius

Inflow boundary

Outflow boundary

Continuity Equation Residual

Continuity Equation Residual

-0.015

-0.010

-0.005

0

0.005

0.010

0.015

2.50 2.25 2.00 1.75 1.50 1.25 1.00

N

17

33
Stagnation Cylinder Flow
Residual Convergence

$FV(2,1)$ cycle

Inviscid cylinder (theta=90-30 to 90+30)
Implicit: line-theta (T-->B) p relaxation
Implicit: line-theta (T-->B) u,v relaxation
Boundary solve(5-boundary-lines)
Stagnation Flow

FMG-1 Algorithm, Algebraic Error

<table>
<thead>
<tr>
<th>Grid</th>
<th>Discretization Error</th>
<th>Alg./Discr. Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>17x17</td>
<td>.320E-03</td>
<td>0.24</td>
</tr>
<tr>
<td>33x33</td>
<td>.756E-04</td>
<td>0.36</td>
</tr>
<tr>
<td>65x65</td>
<td>.182E-04</td>
<td>0.55</td>
</tr>
<tr>
<td>129x129</td>
<td>.456E-05</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Concluding Remarks

- Several issues isolated and improved in stagnation flows
 - Discrete closure conditions at boundary
 - Instability of decoupled solves in deceleration region

- Improved relaxations developed
 - Interior uncoupled line relaxations locally coupled more strongly at boundary
 - Diagonally dominant relaxation for momentum equations

- TME efficiency attained (10 minimum work units)
 - FMG-1 algebraic errors below discretization errors
 - Asymptotic rate of elliptic factor attained